

DESIGN AND EVALUATION OF A HIERARCHICAL ARCHITECTURE FOR

HANDWRITTEN CHARACTER RECOGNITION

Ioan Z. MIHU, “Lucian Blaga” University of Sibiu, Computer Science Department,
str. Emil Cioran, nr. 4, Sibiu, ROMANIA, email: ioan.z.mihu@ulbsibiu.ro

 Horia V. CĂPRIŢĂ, “Lucian Blaga” University of Sibiu, Computer Science Department,
str. Emil Cioran, nr. 4, Sibiu, ROMANIA, email: horia.caprita@ulbsibiu.ro

Abstract:

Handwritten character recognition represents a
problem that was approached in many ways by the
scientists. Although a generally solution for any type of
handwritten characters not founded yet, the obtained
results give hopes to continue the researches in this field.

In this paper, we present a software architecture
used in character recognition: Hierarchical Neural
Network (HNN) architecture (Halici et al. 1999). Using
this architecture, we have approached two important
aspects from the handwritten character recognition task:
input data preprocessing and clustering. The input data
preprocessing consists of a compression applied to the
input character in order to obtain a reduced standard
character matrix. The reduced character matrix will be
used, in an efficient manner, as input data, in the
character recognition application. The first stage in the
character recognition is the clustering stage performed
by a Self-Organizing Feature Map (SOFM) Neural
Network (NN). The clustering process consists in fact in
a classification based on the input vectors similarities.

Keywords: Hierarchical Architecture, Neural Networks
and Handwritten Character Recognition

1. INTRODUCTION

The first step performed in a character
recognition process is the common features extraction
that could be viewed as a transformation of the input
space into the features space.
 The second step performed in a character
recognition process is the classification. This process
consists of two successive stages (Mihu et al. 2001):

• the preclassification
• the classification of the previous results

2. HNN ARCHITECTURE

The fourth hierarchical levels of HNN
architecture presented in figure 1 are: the preprocessor
level, the SOFM level, the recognition modules (PCA
and MLP) and the voting mechanism. The preprocessor
performs the transformation of the input data space into
the features space.

In
p

ut
 P

a
tte

rn
s

Pr
ep

ro
ce

ss
or

Vo
tin

g
 m

e
c

ha
ni

smPCA

PCA

PCA

PCA

MLP

MLP

MLP

MLP

Output
SOFM level

m×m output neurons
Trigger

m×m
modules recognition area

Figure 1. HNN architecture (Halici et al. 1999)

2.1. The Preprocessor

The preprocessing stage consists of two steps:

• character selection
• character compression

The preprocessor’s inputs are bitmap files

obtained by scanning a handwritten document page. We
designed a graphical selector controlled by user by
means of mouse device (figure 2).

Figure 2. The graphical selector:

2.2. Character Normalization Algorithm

In the character selection stage it is obtained a m×n

character matrix (m, n > 10) (Mihu et al. 2001). The
SOFM module disclaims standard compressed vectors
as inputs.

Figure 3. Character ‘D’ selection (40×32 pixels)

 The normalization algorithm will compress the
selected character and generates the standard 10×10
character matrix for the SOFM module (figure 4).

In these matrices, a 0 value represents the
black color and a maximum value represents the white
color; the intermediary values are levels of gray. Figure
8 shows a standard character generated by the
normalization algorithm and his representation in gray
levels (“8-grays” matrix). The “n-grays” matrices were
used in the simulation process in order to take a decision
about the best matrix format that could be used for the
HNN architecture.

7775577777
7760477635
7750577305
7712776037
7406763077
4017510377
0001010377
3410362154
7766775000
7777776300

Figure 4. The graphical representation of ‘u’ character and the afferent matrix resulted after normalization (8-grays)

3. THE HNN SIMULATION

In the first step, it is necessary to perform a
verification process. For that, we followed a simple
procedure:

• The bitmap files (used as inputs for the preprocessor)

were built from printing characters written with two
different fonts: Courier New and Times New Roman;

• In the learning phase of the SOFM, the training

vectors were characters from the Courier New font;

• In the recognition process, the input vectors were
characters from the Times New Roman font;

In the second step of the verification process, we used

handwritten characters by different people.

4. THE EVALUATION RESULTS

The results presented in this paragraph refer to the
preprocessor and the SOFM levels:

• 4×4 SOFM network, “8-grays” input vectors;
• 6×6 SOFM network, “8-grays” input vectors;

4.1. The results corresponding to 4×4
SOFM architecture

The clusters configuration is presented in table 1

and the classification error is presented in the histogram
in figure 5.

Table 1. The obtained clusters using “8-grays” input
vectors

ID Cluster Assigned Character

0 X, x
1 N, h,r,4
2 K, R, k

3 G, U, g, 9
4 V, Y
5 F, I, T, f, v,5
6 C, c, e
7 M
8 J, j, y, 7
9 L, Z, d, i, t, z,2

10 E, S, 6, 8
11 a, m, n, u
12 1
13 B, D, b, l, s, 3
14 O,o,0
15 A, H, P, p

Classification
Error

0

0,2

0,4

0,6

0,8

1

A B C D E F G H I J K L M N O P R S T U V X Y Z

0

0,2

0,4

0,6

0,8

1

a b c d e f g h i j k l m n o p r s t u v x y z

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 0

a) the classification error for the upper characters

Classification
Error

b) the classification error for the lower characters

Classification
Error

l ifi

c) the classification error for the numeric characters

Figure 5. The classification error for 4×4 SOFM network, “8-grays” input vectors

5. CONCLUSIONS

The advantages of the implemented character
normalization algorithm are:

• The compression doesn’t affect the essential
features of the characters. The resulted matrix
retains, in a compressed form, the character with
his essential features (see figure 6);

• The compression level is automatically adjusted.
Starting from source matrices of variable
dimensions, the algorithm will generate destination
matrices of standard dimension (10×10 pixels);

• The primitives libraries (see figure 6) obtained by
using the compression algorithm can be used as
training sets for the neural networks in the next

levels of HNN in the character recognition
application.

The obtained results led to the following conclusions:

• The HNN architecture is very efficient for printed

character recognition task;
• The performances decrease in case of handwritten

character recognition. The errors are inherent in
this stage (because of input patterns diversity);
they will be eliminated by the following modules
in the HNN architecture (PCA, MLP and voting
mechanism).

Figure 6. The a, b, E, o, p, z primitives obtained in preprocessing stage
(“8-grays” input vectors)

REFERENCES

Bennani Y., Fogelman-Soulie F., P. Gallinari, "Text -
dependent speaker identification using LVQ", Proc of
the Int. Neural Networks Conf., vol. 2, Paris, July 1990,
pag. 1087 - 1090.

Comon P., Voz J. L., Verleysen M., "Estimation of
performance bounds in supervised classification", In M.
Verleysen, editor, ESANN: European Symposium on
Artificial Neural Networks, Bruxelles, April 1994, pag.
37 - 42.

Guyon I., "Neural networks and applications", Internal
Report AT & T Bell Labs. September 1990.

Halici U., Erol A., Ongun G., “Industrial Applications
of Hierarchical Neural Networks: Character
Recognition and Fingerprint Classification”, Industrial
Applications of NNs, CRC Press, 1999, pag. 159-192.

Kohonen T., "The "neural" phonetic typewriter",
Computer, March 1988, pag. 11 - 22.

Kohonen T., "Self - Organization and Associative
Memory", Berlin, Springer - Verlag, 1988.

Kohonen T., "Self - Organizing Maps", Springer -
Verlag, Berlin Heidelberg, 1997.

Mihu I. Z., Căpriţă V.H., “Preprocessor for the
Handwritten Character Recognition” (in romanian),
Proceedings of ATU, Sibiu, 2001.

Schalkoff R.J., “Artificial Neural Networks”, McGraw-
Hill, 1997.

Zurada J.M., "Introduction to Artificial Neural
Systems", West Publishing Company, St. Paul, 1992.

	Figure 1. HNN architecture (Halici et al. 1999)
	2.2. Character Normalization Algorithm
	REFERENCES

